Facts were the lifeblood of nineteenth-century atlas maps, but publishers needed ingenuity and a little artistic license to present an ever-changing world to their info-hungry readers. Matthew Sturgis admires their creative solutions.
We live in an age of graphics. Everywhere signs and symbols assail us. We are too busy to read and there is too much information to process, so things get packaged up in pictures – in pie charts, graphs, bar charts, word clouds, timelines, and flow diagrams.

From the weather map to the share-price graph, such devices have become familiar in newspapers and on television. Once static and formal, they have, with the advent of the computer, grown ever more febrile. Pictures no longer sit still: they grow and morph and merge. And you never know where they are going to appear next: they pop up on your smartphone, race across billboards, and jingle on your iPad screen.

Info-graphics, of course, are not a new phenomenon. Indeed, the notion of putting information into visual form is as old as civilization itself. The cave paintings of Lascaux are info-graphics of a sort. And the earliest forms of written communication used pictograms rather than letters. The idea, though, of condensing a mass of complex data into a succinct visual form really belongs to the late eighteenth and early nineteenth centuries. The enthusiasm of the new industrial age for both order and facts produced a spectacular array of graphic responses as the wonders of the physical world were first discovered and then codified and ordered.

Among the finest – and most characteristic – productions of the period are the charts produced to display the range of the earth’s recently measured geographical wonders: the relative height of the world’s mountains; the varying lengths of the world’s rivers. These are extraordinary documents, as much works of art as works of science, ingeniously and variously conceived and often very beautiful.

In some of these charts the mountains are all bunched closely together, piled up, like some wonderful jelly mold. In others, the world’s great peaks are strung out in order across the page in a great diagonal, like some long mountain range, gradually shelving down from the very highest to the not quite so high. Or else they are artfully arranged into a fantastical landscape, the great mountains of the Western Hemisphere gathered on the left-hand side of the page, the highest peaks of the Eastern Hemisphere on the right, the puny Alps acting as foothills to the majestic Himalayas.

Mountains, of course, look good in simplified illustrations. They have dramatic triangular silhouettes; they are readily colored and shaded. Active volcanoes can be adorned with wisps of smoke, peaks can be capped with snow. Against these bold pictorial forms the schematic representations of the rivers tend to look rather less impressive. Little more than single lines, straightened out, their mouths aligned at the top or bottom of the page, they often resemble so many rats’ tails.

To compensate for this deficiency the chartmakers became adept at arranging the rank of rivers into elegant patterns around the main mountain-part of their designs. If a chart had disposed the mountains in a single rising diagonal, then the rivers could be lined up, vertically, to fill in the upper part of the chart – the longest rivers set against the shortest mountains and vice versa. Where the jelly-mold layout had been adopted, the rivers might frame the central mountain-mass like a fringed pelmet, the longest rivers running down the outside edge of the page, gradually reducing in length as they reached the center and the highest peaks of the mountains. Although mountains and rivers are the most easily quantifiable elements of geography, and the most commonly featured in specialized charts, other natural features were sometimes added: the world’s highest waterfalls, largest lakes, or biggest islands.

The absolutes of mountain height, river length, and lake or island area were of course the main facts conveyed in these charts. But there was always scope for some additional information. Charles Smith’s Comprehensive View of the Heights of the Mountains, of course, look good in simplified illustrations. Volcanoes can be adorned with wisps of smoke. Peaks can be capped with snow.
This atlas map (above), entitled Comparative Height of the Principal Mountains and other Elevations in the World, was engraved by J. Cone and published in 1823 by Fielding Lucas, Jr., of Baltimore. By 1864, when the atlas map The Principal Mountains and Rivers of the World compiled from the Latest Authorities (left) was printed by Schonberg & Co., New York, the highest mountain in the world had been established as Everest, named after its discoverer Sir George Everest, that the mountain formerly known as Peak 15 of the Himalayas was recognized as the true top spot— at 29,029 feet—and later given its discoverer’s name.

In the late eighteenth century, it was generally thought that Chimborazo was the highest mountain in the world. In 1808, however, the great peak of Dhaulagiri in Nepal claimed this position, being measured at 26,262 feet. It was knocked off its perch 30 years later with the discovery that the Himalayan Kangchenjunga was higher. And it was only in 1856, following the Great Trigonometric Survey of British India by Sir George Everest, that the mountain formerly known as Peak 15 of the Himalayas was recognized as the true top spot—at 29,029 feet—and later given its discoverer’s name.

Rivers, too, jostled for position. With all the difficulties of tracking a river to its source, with all the questions of tributaries, there was much scope for debate. Early charts tend to put either the Amazon or the Mississippi/Missouri first and rank the Nile about fifth. But, following the discovery of Lake Victoria as the source of the White Nile, it shot up the rankings to Number One.

Change, of course, was good news for publishers. It meant a new edition, a chance to try out new color-printing processes, and—of course—new sales. Even in the pre-iPad age, everyone wanted an upgrade.